Neuronal Mechanisms for Illusory Brightness Perception in Humans
نویسندگان
چکیده
Biological visual systems are extraordinarily capable of recovering the shape and brightness of objects from sparse and fragmentary information. Using functional magnetic imaging, we show that two associative areas of the dorsal pathway--in the caudal region of the intrapariatal sulcus and in the lateral occipital sulcus--respond specifically to the Craik-O'Brien-Cornsweet illusion generated by high-pass filtered edges. Other visual areas, including primary visual cortex, also respond strongly to the retinotopic location of the edge, but these areas respond equally well to a line of matched contrast and detectability, rather than specifically to the brightness illusion. The reconstruction of surface and/or its brightness seems to be achieved by associative areas from the information about visual features provided by the primary visual cortices, even where there is no physical difference in luminance.
منابع مشابه
Oriented multiscale spatial filtering and contrast normalization: a parsimonious model of brightness induction in a continuum of stimuli including White, Howe and simultaneous brightness contrast
The White effect [Perception 8 (1979) 413] cannot be simply explained as due to either brightness contrast or brightness assimilation because the direction of the induced brightness change does not correlate with the amount of black or white border in contact with the gray test patch. This has led some investigators to abandon spatial filtering explanations not only for the White effect but for...
متن کاملCoral reef fish perceive lightness illusions
Visual illusions occur when information from images are perceived differently from the actual physical properties of the stimulus in terms of brightness, size, colour and/or motion. Illusions are therefore important tools for sensory perception research and from an ecological perspective, relevant for visually guided animals viewing signals in heterogeneous environments. Here, we tested whether...
متن کاملBrightness perception, illusory contours, and corticogeniculate feedback.
A neural network model is developed to explain how visual thalamocortical interactions give rise to boundary percepts such as illusory contours and surface percepts such as filled-in brightnesses. Top-down feedback interactions are needed in addition to bottom-up feed-forward interactions to simulate these data. One feedback loop is modeled between lateral geniculate nucleus (LGN) and cortical ...
متن کاملSetting boundaries: brain dynamics of modal and amodal illusory shape completion in humans.
Normal visual perception requires differentiating foreground from background objects. Differences in physical attributes sometimes determine this relationship. Often such differences must instead be inferred, as when two objects or their parts have the same luminance. Modal completion refers to such perceptual "filling-in" of object borders that are accompanied by concurrent brightness enhancem...
متن کاملContour Erasure and Filling-in: Old Simulations Account for Most New Observations.
Three recent studies used similar stimulus sequences to investigate mechanisms for brightness perception. Anstis and Greenlee (2014) demonstrated that adaptation to a flickering black and white outline erased the visibility of a subsequent target shape defined by a luminance increment or decrement. Robinson and de Sa (2012, 2013) used a flickering disk or annulus to show a similar effect. Here,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 47 شماره
صفحات -
تاریخ انتشار 2005